Package: waywiser 0.6.0.9000

Michael Mahoney

waywiser: Ergonomic Methods for Assessing Spatial Models

Assessing predictive models of spatial data can be challenging, both because these models are typically built for extrapolating outside the original region represented by training data and due to potential spatially structured errors, with "hot spots" of higher than expected error clustered geographically due to spatial structure in the underlying data. Methods are provided for assessing models fit to spatial data, including approaches for measuring the spatial structure of model errors, assessing model predictions at multiple spatial scales, and evaluating where predictions can be made safely. Methods are particularly useful for models fit using the 'tidymodels' framework. Methods include Moran's I ('Moran' (1950) <doi:10.2307/2332142>), Geary's C ('Geary' (1954) <doi:10.2307/2986645>), Getis-Ord's G ('Ord' and 'Getis' (1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement coefficients from 'Ji' and Gallo (2006) (<doi:10.14358/PERS.72.7.823>), agreement metrics from 'Willmott' (1981) (<doi:10.1080/02723646.1981.10642213>) and 'Willmott' 'et' 'al'. (2012) (<doi:10.1002/joc.2419>), an implementation of the area of applicability methodology from 'Meyer' and 'Pebesma' (2021) (<doi:10.1111/2041-210X.13650>), and an implementation of multi-scale assessment as described in 'Riemann' 'et' 'al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).

Authors:Michael Mahoney [aut, cre], Lucas Johnson [ctb], Virgilio Gómez-Rubio [rev], Jakub Nowosad [rev], Posit Software, PBC [cph, fnd]

waywiser_0.6.0.9000.tar.gz
waywiser_0.6.0.9000.zip(r-4.5)waywiser_0.6.0.9000.zip(r-4.4)waywiser_0.6.0.9000.zip(r-4.3)
waywiser_0.6.0.9000.tgz(r-4.4-any)waywiser_0.6.0.9000.tgz(r-4.3-any)
waywiser_0.6.0.9000.tar.gz(r-4.5-noble)waywiser_0.6.0.9000.tar.gz(r-4.4-noble)
waywiser_0.6.0.9000.tgz(r-4.4-emscripten)waywiser_0.6.0.9000.tgz(r-4.3-emscripten)
waywiser.pdf |waywiser.html
waywiser/json (API)
NEWS

# Install 'waywiser' in R:
install.packages('waywiser', repos = c('https://cafri-labs.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ropensci/waywiser/issues

Pkgdown:https://docs.ropensci.org

Datasets:
  • guerry - Guerry "Moral Statistics"
  • ny_trees - Number of trees and aboveground biomass for Forest Inventory and Analysis plots in New York State
  • worldclim_simulation - Simulated data based on WorldClim Bioclimatic variables

On CRAN:

spatialspatial-analysistidymodelstidyverse

6.46 score 38 stars 17 scripts 309 downloads 54 exports 44 dependencies

Last updated 6 months agofrom:564175ea05. Checks:OK: 1 WARNING: 6. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 06 2024
R-4.5-winWARNINGDec 06 2024
R-4.5-linuxWARNINGDec 06 2024
R-4.4-winWARNINGDec 06 2024
R-4.4-macWARNINGDec 06 2024
R-4.3-winWARNINGDec 06 2024
R-4.3-macWARNINGDec 06 2024

Exports:ww_agreement_coefficientww_agreement_coefficient_vecww_area_of_applicabilityww_build_neighborsww_build_weightsww_global_geary_cww_global_geary_c_vecww_global_geary_pvalueww_global_geary_pvalue_vecww_global_moran_iww_global_moran_i_vecww_global_moran_pvalueww_global_moran_pvalue_vecww_local_geary_cww_local_geary_c_vecww_local_geary_pvalueww_local_geary_pvalue_vecww_local_getis_ord_gww_local_getis_ord_g_pvalueww_local_getis_ord_g_pvalue_vecww_local_getis_ord_g_vecww_local_moran_iww_local_moran_i_vecww_local_moran_pvalueww_local_moran_pvalue_vecww_make_point_neighborsww_make_polygon_neighborsww_multi_scaleww_systematic_agreement_coefficientww_systematic_agreement_coefficient_vecww_systematic_mpdww_systematic_mpd_vecww_systematic_mseww_systematic_mse_vecww_systematic_rmpdww_systematic_rmpd_vecww_systematic_rmseww_systematic_rmse_vecww_unsystematic_agreement_coefficientww_unsystematic_agreement_coefficient_vecww_unsystematic_mpdww_unsystematic_mpd_vecww_unsystematic_mseww_unsystematic_mse_vecww_unsystematic_rmpdww_unsystematic_rmpd_vecww_unsystematic_rmseww_unsystematic_rmse_vecww_willmott_dww_willmott_d_vecww_willmott_d1ww_willmott_d1_vecww_willmott_drww_willmott_dr_vec

Dependencies:bootclassclassIntcliDBIdeldirdotCall64dplyre1071fansifieldsFNNgenericsgluehardhatKernSmoothlatticelifecyclemagrittrmapsMASSMatrixpillarpkgconfigproxypurrrR6Rcpprlangs2sfspspamspDataspdeptibbletidyselectunitsutf8vctrsviridisLitewithrwkyardstick

Assessing models with waywiser

Rendered fromwaywiser.Rmdusingknitr::rmarkdownon Dec 06 2024.

Last update: 2023-10-16
Started: 2022-12-20

Calculating residual spatial autocorrelation

Rendered fromresidual-autocorrelation.Rmdusingknitr::rmarkdownon Dec 06 2024.

Last update: 2023-10-16
Started: 2022-12-10

Multi-scale model assessment

Rendered frommulti-scale-assessment.Rmdusingknitr::rmarkdownon Dec 06 2024.

Last update: 2023-07-03
Started: 2022-12-09

Readme and manuals

Help Manual

Help pageTopics
Guerry "Moral Statistics" (1830s)guerry
Number of trees and aboveground biomass for Forest Inventory and Analysis plots in New York Stateny_trees
Predict from a 'ww_area_of_applicability'predict.ww_area_of_applicability
Simulated data based on WorldClim Bioclimatic variablesworldclim_simulation
Agreement coefficients and related methodsww_agreement_coefficient ww_agreement_coefficient.data.frame ww_agreement_coefficient_vec ww_systematic_agreement_coefficient ww_systematic_agreement_coefficient.data.frame ww_systematic_agreement_coefficient_vec ww_systematic_mpd ww_systematic_mpd.data.frame ww_systematic_mpd_vec ww_systematic_rmpd ww_systematic_rmpd.data.frame ww_systematic_rmpd_vec ww_unsystematic_agreement_coefficient ww_unsystematic_agreement_coefficient.data.frame ww_unsystematic_agreement_coefficient_vec ww_unsystematic_mpd ww_unsystematic_mpd.data.frame ww_unsystematic_mpd_vec ww_unsystematic_rmpd ww_unsystematic_rmpd.data.frame ww_unsystematic_rmpd_vec
Find the area of applicabilityww_area_of_applicability ww_area_of_applicability.data.frame ww_area_of_applicability.formula ww_area_of_applicability.matrix ww_area_of_applicability.recipe ww_area_of_applicability.rset
Make 'nb' objects from sf objectsww_build_neighbors
Build "listw" objects of spatial weightsww_build_weights
Global Geary's C statisticww_global_geary_c ww_global_geary_c_vec ww_global_geary_pvalue ww_global_geary_pvalue_vec
Global Moran's I statisticww_global_moran_i ww_global_moran_i_vec ww_global_moran_pvalue ww_global_moran_pvalue_vec
Local Geary's C statisticww_local_geary_c ww_local_geary_c_vec ww_local_geary_pvalue ww_local_geary_pvalue_vec
Local Getis-Ord G and G* statisticww_local_getis_ord_g ww_local_getis_ord_g_pvalue ww_local_getis_ord_g_pvalue_vec ww_local_getis_ord_g_vec
Local Moran's I statisticww_local_moran_i ww_local_moran_i_vec ww_local_moran_pvalue ww_local_moran_pvalue_vec
Make 'nb' objects from point geometriesww_make_point_neighbors
Make 'nb' objects from polygon geometriesww_make_polygon_neighbors
Evaluate metrics at multiple scales of aggregationww_multi_scale
Willmott's d and related valuesww_systematic_mse ww_systematic_mse.data.frame ww_systematic_mse_vec ww_systematic_rmse ww_systematic_rmse.data.frame ww_systematic_rmse_vec ww_unsystematic_mse ww_unsystematic_mse.data.frame ww_unsystematic_mse_vec ww_unsystematic_rmse ww_unsystematic_rmse.data.frame ww_unsystematic_rmse_vec ww_willmott_d ww_willmott_d.data.frame ww_willmott_d1 ww_willmott_d1.data.frame ww_willmott_d1_vec ww_willmott_dr ww_willmott_dr.data.frame ww_willmott_dr_vec ww_willmott_d_vec