
Package: waywiser (via r-universe)
December 6, 2024

Type Package

Title Ergonomic Methods for Assessing Spatial Models

Version 0.6.0.9000

Description Assessing predictive models of spatial data can be
challenging, both because these models are typically built for
extrapolating outside the original region represented by
training data and due to potential spatially structured errors,
with ``hot spots'' of higher than expected error clustered
geographically due to spatial structure in the underlying data.
Methods are provided for assessing models fit to spatial data,
including approaches for measuring the spatial structure of
model errors, assessing model predictions at multiple spatial
scales, and evaluating where predictions can be made safely.
Methods are particularly useful for models fit using the
'tidymodels' framework. Methods include Moran's I ('Moran'
(1950) <doi:10.2307/2332142>), Geary's C ('Geary' (1954)
<doi:10.2307/2986645>), Getis-Ord's G ('Ord' and 'Getis' (1995)
<doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement
coefficients from 'Ji' and Gallo (2006) (<doi:10.14358/PERS.72.7.823>), agreement met-
rics from 'Willmott'
(1981) (<doi:10.1080/02723646.1981.10642213>) and 'Willmott'
'et' 'al'. (2012) (<doi:10.1002/joc.2419>), an implementation
of the area of applicability methodology from 'Meyer' and
'Pebesma' (2021) (<doi:10.1111/2041-210X.13650>), and an
implementation of multi-scale assessment as described in
'Riemann' 'et' 'al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).

License MIT + file LICENSE

URL https://github.com/ropensci/waywiser,

https://docs.ropensci.org/waywiser/

BugReports https://github.com/ropensci/waywiser/issues

Depends R (>= 4.0)

Imports dplyr (>= 1.1.0), fields, FNN, glue, hardhat, Matrix, purrr,
rlang (>= 1.1.0), sf (>= 1.0-0), spdep (>= 1.1-9), stats,
tibble, tidyselect, vctrs, yardstick (>= 1.2.0)

1

https://doi.org/10.2307/2332142
https://doi.org/10.2307/2986645
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.14358/PERS.72.7.823
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1002/joc.2419
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1016/j.rse.2010.05.010
https://github.com/ropensci/waywiser
https://docs.ropensci.org/waywiser/
https://github.com/ropensci/waywiser/issues

2 Contents

Suggests applicable, caret, CAST, covr, exactextractr, ggplot2, knitr,
modeldata, recipes, rmarkdown, rsample, spatialsample, terra,
testthat (>= 3.0.0), tidymodels, tidyr, tigris, units, vip,
whisker, withr

VignetteBuilder knitr

Config/Needs/website kableExtra

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Config/pak/sysreqs libgdal-dev gdal-bin libgeos-dev libssl-dev
libproj-dev libsqlite3-dev libudunits2-dev

Repository https://cafri-labs.r-universe.dev

RemoteUrl https://github.com/ropensci/waywiser

RemoteRef HEAD

RemoteSha 564175ea050aece4e5cc161d63654b8b1d5fb8a8

Contents
guerry . 3
ny_trees . 4
predict.ww_area_of_applicability . 5
worldclim_simulation . 6
ww_agreement_coefficient . 7
ww_area_of_applicability . 9
ww_build_neighbors . 13
ww_build_weights . 14
ww_global_geary_c . 15
ww_global_moran_i . 17
ww_local_geary_c . 18
ww_local_getis_ord_g . 20
ww_local_moran_i . 22
ww_make_point_neighbors . 24
ww_make_polygon_neighbors . 25
ww_multi_scale . 25
ww_willmott_d . 28

Index 32

guerry 3

guerry Guerry "Moral Statistics" (1830s)

Description

This data and description are taken from the geodaData R package. Classic social science foun-
dational study by Andre-Michel Guerry on crime, suicide, literacy and other “moral statistics” in
1830s France. Data from the R package Guerry (Michael Friendly and Stephane Dray).

Usage

guerry

Format

An sf data frame with 85 rows, 23 variables, and a geometry column:

dept Department ID: Standard numbers for the departments

Region Region of France (’N’=’North’, ’S’=’South’, ’E’=’East’, ’W’=’West’, ’C’=’Central’).
Corsica is coded as NA.

Dprtmnt Department name: Departments are named according to usage in 1830, but without
accents. A factor with levels Ain Aisne Allier ... Vosges Yonne

Crm_prs Population per Crime against persons.

Crm_prp Population per Crime against property.

Litercy Percent of military conscripts who can read and write.

Donatns Donations to the poor.

Infants Population per illegitimate birth.

Suicids Population per suicide.

Maincty Size of principal city (’1:Sm’, ’2:Med’, ’3:Lg’), used as a surrogate for population den-
sity. Large refers to the top 10, small to the bottom 10; all the rest are classed Medium.

Wealth Per capita tax on personal property. A ranked index based on taxes on personal and
movable property per inhabitant.

Commerc Commerce and Industry, measured by the rank of the number of patents / population.

Clergy Distribution of clergy, measured by the rank of the number of Catholic priests in active
service population.

Crim_prn Crimes against parents, measured by the rank of the ratio of crimes against parents to
all crimes – Average for the years 1825-1830.

Infntcd Infanticides per capita. A ranked ratio of number of infanticides to population – Average
for the years 1825-1830.

Dntn_cl Donations to the clergy. A ranked ratio of the number of bequests and donations inter
vivios to population – Average for the years 1815-1824.

Lottery Per capita wager on Royal Lottery. Ranked ratio of the proceeds bet on the royal lottery
to population — Average for the years 1822-1826.

4 ny_trees

Desertn Military desertion, ratio of number of young soldiers accused of desertion to the force of
the military contingent, minus the deficit produced by the insufficiency of available billets –
Average of the years 1825-1827.

Instrct Instruction. Ranks recorded from Guerry’s map of Instruction. Note: this is inversely
related to Literacy

Prsttts Number of prostitutes registered in Paris from 1816 to 1834, classified by the department
of their birth

Distanc Distance to Paris (km). Distance of each department centroid to the centroid of the Seine
(Paris)

Area Area (1000 km^2).

Pop1831 Population in 1831, in 1000s

Details

Sf object, units in m. EPSG 27572: NTF (Paris) / Lambert zone II.

Source

• Angeville, A. (1836). Essai sur la Statistique de la Population française Paris: F. Doufour.

• Guerry, A.-M. (1833). Essai sur la statistique morale de la France Paris: Crochard. English
translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press,
2002.

• Parent-Duchatelet, A. (1836). De la prostitution dans la ville de Paris, 3rd ed, 1857, p. 32, 36

https://geodacenter.github.io/data-and-lab/Guerry/

Examples

if (requireNamespace("sf", quietly = TRUE)) {
library(sf)
data(guerry)

plot(guerry["Donatns"])
}

ny_trees Number of trees and aboveground biomass for Forest Inventory and
Analysis plots in New York State

Description

The original data is derived from the Forest Inventory and Analysis program, implemented by the
US Department of Agriculture’s Forest Service.

Usage

ny_trees

https://geodacenter.github.io/data-and-lab/Guerry/

predict.ww_area_of_applicability 5

Format

An sf object using EPSG 5070: NAD83 / Conus Albers (in meters), with 5,303 rows and 5 columns:

yr The year measurements were taken.

plot A unique identifier signifying the plot measurements were taken at.

n_trees The number of trees present on a plot.

agb The total aboveground biomass at the plot location, in pounds.

geometry The centroid of the plot location.

predict.ww_area_of_applicability

Predict from a ww_area_of_applicability

Description

Predict from a ww_area_of_applicability

Usage

S3 method for class 'ww_area_of_applicability'
predict(object, new_data, ...)

Arguments

object A ww_area_of_applicability object.

new_data A data frame or matrix of new samples.

... Not used.

Details

The function computes the distance indices of the new data and whether or not they are "inside" the
area of applicability.

Value

A tibble of predictions, with two columns: di, numeric, contains the "dissimilarity index" of each
point in new_data, while aoa, logical, contains whether a row is inside (TRUE) or outside (FALSE)
the area of applicability.

Note that this function is often called using terra::predict(), in which case aoa will be con-
verted to numeric implicitly; 1 values correspond to cells "inside" the area of applicability and 0
corresponds to cells "outside" the AOA.

The number of rows in the tibble is guaranteed to be the same as the number of rows in new_data.
Rows with NA predictor values will have NA di and aoa values.

6 worldclim_simulation

See Also

Other area of applicability functions: ww_area_of_applicability()

Examples

library(vip)
train <- gen_friedman(1000, seed = 101) # ?vip::gen_friedman
test <- train[701:1000,]
train <- train[1:700,]
pp <- stats::ppr(y ~ ., data = train, nterms = 11)
metric_name <- ifelse(

packageVersion("vip") > package_version("0.3.2"),
"rsq",
"rsquared"

)

importance <- vip::vi_permute(
pp,
target = "y",
metric = metric_name,
pred_wrapper = predict,
train = train

)

aoa <- ww_area_of_applicability(y ~ ., train, test, importance = importance)
predict(aoa, test)

worldclim_simulation Simulated data based on WorldClim Bioclimatic variables

Description

This data is adapted from the CAST vignette vignette("cast02-AOA-tutorial", package =
"CAST"). The original data is derived from the Worldclim global climate variables.

Usage

worldclim_simulation

Format

An sf object with 10,000 rows and 6 columns:

bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp))

bio10 Mean Temperature of Warmest Quarter

bio13 Precipitation of Wettest Month

bio19 Precipitation of Coldest Quarter

ww_agreement_coefficient 7

geometry The location of the sampled point.

response A virtual species distribution, generated using the generateSpFromPCA() function from
the virtualspecies package.

Source

https://www.worldclim.org

ww_agreement_coefficient

Agreement coefficients and related methods

Description

These functions calculate the agreement coefficient and mean product difference (MPD), as well as
their systematic and unsystematic components, from Ji and Gallo (2006). Agreement coefficients
provides a useful measurement of agreement between two data sets which is bounded, symmetrical,
and can be decomposed into systematic and unsystematic components; however, it assumes a linear
relationship between the two data sets and treats both "truth" and "estimate" as being of equal
quality, and as such may not be a useful metric in all scenarios.

Usage

ww_agreement_coefficient(data, ...)

S3 method for class 'data.frame'
ww_agreement_coefficient(data, truth, estimate, na_rm = TRUE, ...)

ww_agreement_coefficient_vec(truth, estimate, na_rm = TRUE, ...)

ww_systematic_agreement_coefficient(data, ...)

S3 method for class 'data.frame'
ww_systematic_agreement_coefficient(data, truth, estimate, na_rm = TRUE, ...)

ww_systematic_agreement_coefficient_vec(truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_agreement_coefficient(data, ...)

S3 method for class 'data.frame'
ww_unsystematic_agreement_coefficient(data, truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_agreement_coefficient_vec(truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_mpd(data, ...)

S3 method for class 'data.frame'

https://www.worldclim.org

8 ww_agreement_coefficient

ww_unsystematic_mpd(data, truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_mpd_vec(truth, estimate, na_rm = TRUE, ...)

ww_systematic_mpd(data, ...)

S3 method for class 'data.frame'
ww_systematic_mpd(data, truth, estimate, na_rm = TRUE, ...)

ww_systematic_mpd_vec(truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_rmpd(data, ...)

S3 method for class 'data.frame'
ww_unsystematic_rmpd(data, truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_rmpd_vec(truth, estimate, na_rm = TRUE, ...)

ww_systematic_rmpd(data, ...)

S3 method for class 'data.frame'
ww_systematic_rmpd(data, truth, estimate, na_rm = TRUE, ...)

ww_systematic_rmpd_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

Agreement coefficient values range from 0 to 1, with 1 indicating perfect agreement. truth and
estimate must be the same length. This function is not explicitly spatial and as such can be applied
to data with any number of dimensions and any coordinate reference system.

ww_area_of_applicability 9

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups. For _vec() func-
tions, a single value (or NA).

References

Ji, L. and Gallo, K. 2006. "An Agreement Coefficient for Image Comparison." Photogrammetric
Engineering & Remote Sensing 72(7), pp 823–833, doi: 10.14358/PERS.72.7.823.

See Also

Other agreement metrics: ww_willmott_d()

Other yardstick metrics: ww_global_geary_c(), ww_global_moran_i(), ww_local_geary_c(),
ww_local_getis_ord_g(), ww_local_moran_i(), ww_willmott_d()

Examples

Calculated values match Ji and Gallo 2006:
x <- c(6, 8, 9, 10, 11, 14)
y <- c(2, 3, 5, 5, 6, 8)

ww_agreement_coefficient_vec(x, y)
ww_systematic_agreement_coefficient_vec(x, y)
ww_unsystematic_agreement_coefficient_vec(x, y)
ww_systematic_mpd_vec(x, y)
ww_unsystematic_mpd_vec(x, y)
ww_systematic_rmpd_vec(x, y)
ww_unsystematic_rmpd_vec(x, y)

example_df <- data.frame(x = x, y = y)
ww_agreement_coefficient(example_df, x, y)
ww_systematic_agreement_coefficient(example_df, x, y)
ww_unsystematic_agreement_coefficient(example_df, x, y)
ww_systematic_mpd(example_df, x, y)
ww_unsystematic_mpd(example_df, x, y)
ww_systematic_rmpd(example_df, x, y)
ww_unsystematic_rmpd(example_df, x, y)

ww_area_of_applicability

Find the area of applicability

10 ww_area_of_applicability

Description

This function calculates the "area of applicability" of a model, as introduced by Meyer and Pebesma
(2021). While the initial paper introducing this method focused on spatial models, there is nothing
inherently spatial about the method; it can be used with any type of data (and, because it does not
care about the spatial arrangement of your data, can be used with 2D or 3D spatial data, and with
geographic or projected CRS).

Usage

ww_area_of_applicability(x, ...)

S3 method for class 'data.frame'
ww_area_of_applicability(x, testing = NULL, importance, ..., na_rm = FALSE)

S3 method for class 'matrix'
ww_area_of_applicability(x, testing = NULL, importance, ..., na_rm = FALSE)

S3 method for class 'formula'
ww_area_of_applicability(
x,
data,
testing = NULL,
importance,
...,
na_rm = FALSE

)

S3 method for class 'recipe'
ww_area_of_applicability(
x,
data,
testing = NULL,
importance,
...,
na_rm = FALSE

)

S3 method for class 'rset'
ww_area_of_applicability(x, y = NULL, importance, ..., na_rm = FALSE)

Arguments

x Either a data frame, matrix, formula (specifying predictor terms on the right-
hand side), recipe (from recipes::recipe(), or rset object, produced by re-
sampling functions from rsample or spatialsample.
If x is a recipe, it should be the same one used to pre-process the data used in
your model. If the recipe used to build the area of applicability doesn’t match the
one used to build the model, the returned area of applicability won’t be correct.

ww_area_of_applicability 11

... Not currently used.

testing A data frame or matrix containing the data used to validate your model. This
should be the same data as used to calculate all model accuracy metrics.
If this argument is NULL, then this function will use the training data (from x
or data) to calculate within-sample distances. This may result in the area of
applicability threshold being set too high, with the result that too many points
are classed as "inside" the area of applicability.

importance Either:

• A data.frame with two columns: term, containing the names of each vari-
able in the training and testing data, and estimate, containing the (raw or
scaled) feature importance for each variable.

• An object of class vi with at least two columns, Variable and Importance.

All variables in the training data (x or data, depending on the context) must
have a matching importance estimate, and all terms with importance estimates
must be in the training data.

na_rm A logical of length 1, indicating whether observations (in both training and test-
ing) with NA values in predictors should be removed. Only predictor variables
are considered, and this value has no impact on predictions (where NA values
produce NA predictions). If na_rm = FALSE and NA values are found, this func-
tion returns an error.

data The data frame representing your "training" data, when using the formula or
recipe methods.

y Optional: a recipe (from recipes::recipe()) or formula.
If y is a recipe, it should be the same one used to pre-process the data used in
your model. If the recipe used to build the area of applicability doesn’t match the
one used to build the model, the returned area of applicability won’t be correct.

Details

Predictions made on points "inside" the area of applicability should be as accurate as predictions
made on the data provided to testing. That means that generally testing should be your final
hold-out set so that predictions on points inside the area of applicability are accurately described by
your reported model metrics. When passing an rset object to x, predictions made on points "inside"
the area of applicability instead should be as accurate as predictions made on the assessment sets
during cross-validation.

This method assumes your model was fit using dummy variables in the place of any non-numeric
predictor, and that you have one importance score per dummy variable. Having non-numeric pre-
dictors will cause this function to fail.

Value

A ww_area_of_applicability object, which can be used with predict() to calculate the distance
of new data to the original training data, and determine if new data is within a model’s area of
applicability.

12 ww_area_of_applicability

Differences from CAST

This implementation differs from Meyer and Pebesma (2021) (and therefore from CAST) when
using cross-validated data in order to minimize data leakage. Namely, in order to calculate the
dissimilarity index DIk, CAST:

1. Rescales all data used for cross validation at once, lumping assessment folds in with analysis
data.

2. Calculates a single d̄ as the mean distance between all points in the rescaled data set, including
between points in the same assessment fold.

3. For each point k that’s used in an assessment fold, calculates dk as the minimum distance
between k and any point in its corresponding analysis fold.

4. Calculates DIk by dividing dk by d̄ (which was partially calculated as the distance between k
and the rest of the rescaled data).

Because assessment data is used to calculate constants for rescaling analysis data and d̄, the assess-
ment data may appear too "similar" to the analysis data when calculating DIk. As such, waywiser
treats each fold in an rset independently:

1. Each analysis set is rescaled independently.

2. Separate d̄ are calculated for each fold, as the mean distance between all points in the analysis
set for that fold.

3. Identically to CAST, dk is the minimum distance between a point k in the assessment fold and
any point in the corresponding analysis fold.

4. DIk is then found by dividing dk by d̄, which was calculated independently from k.

Predictions are made using the full training data set, rescaled once (in the same way as CAST), and
the mean d̄ across folds, under the assumption that the "final" model in use will be retrained using
the entire data set.

In practice, this means waywiser produces very slightly higher d̄ values than CAST and a slightly
higher area of applicability threshold than CAST when using rset objects.

References

H. Meyer and E. Pebesma. 2021. "Predicting into unknown space? Estimating the area of applica-
bility of spatial prediction models," Methods in Ecology and Evolution 12(9), pp 1620 - 1633, doi:
10.1111/2041-210X.13650.

See Also

Other area of applicability functions: predict.ww_area_of_applicability()

Examples

train <- vip::gen_friedman(1000, seed = 101) # ?vip::gen_friedman
test <- train[701:1000,]
train <- train[1:700,]
pp <- stats::ppr(y ~ ., data = train, nterms = 11)
metric_name <- ifelse(

ww_build_neighbors 13

packageVersion("vip") > package_version("0.3.2"),
"rsq",
"rsquared"

)

importance <- vip::vi_permute(
pp,
target = "y",
metric = metric_name,
pred_wrapper = predict,
train = train

)

aoa <- ww_area_of_applicability(y ~ ., train, test, importance = importance)
predict(aoa, test)

Equivalent methods for calculating AOA:
ww_area_of_applicability(train[2:11], test[2:11], importance)
ww_area_of_applicability(

as.matrix(train[2:11]),
as.matrix(test[2:11]),
importance

)

ww_build_neighbors Make ’nb’ objects from sf objects

Description

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Usage

ww_build_neighbors(data, nb = NULL, ..., call = rlang::caller_env())

Arguments

data An sf object (of class "sf" or "sfc").

nb An object of class "nb" (in which case it will be returned unchanged), or a func-
tion to create an object of class "nb" from data and ..., or NULL. See details.

... Arguments passed to the neighbor-creating function.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.

14 ww_build_weights

Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Details

When nb = NULL, the method used to create neighbors from data is dependent on what geometry
type data is:

• If nb = NULL and data is a point geometry (classes "sfc_POINT" or "sfc_MULTIPOINT") the
"nb" object will be created using ww_make_point_neighbors().

• If nb = NULL and data is a polygon geometry (classes "sfc_POLYGON" or "sfc_MULTIPOLYGON")
the "nb" object will be created using ww_make_polygon_neighbors().

• If nb = NULL and data is any other geometry type, the "nb" object will be created using the
centroids of the data as points, with a warning.

Value

An object of class "nb".

Examples

ww_build_neighbors(guerry)

ww_build_weights Build "listw" objects of spatial weights

Description

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Usage

ww_build_weights(x, wt = NULL, include_self = FALSE, ...)

Arguments

x Either an sf object or a "nb" neighbors list object. If an sf object, will be con-
verted into a neighbors list via ww_build_neighbors().

wt Either a "listw" object (which will be returned unchanged), a function for creat-
ing a "listw" object from x, or NULL, in which case weights will be constructed
via spdep::nb2listw().

include_self Include each region itself in its own list of neighbors?

... Arguments passed to the weight constructing function.

ww_global_geary_c 15

Value

A listw object.

Examples

ww_build_weights(guerry)

ww_global_geary_c Global Geary’s C statistic

Description

Calculate the global Geary’s C statistic for model residuals. ww_global_geary_c() returns the
statistic itself, while ww_global_geary_pvalue() returns the associated p value. These functions
are meant to help assess model predictions, for instance by identifying if there are clusters of higher
residuals than expected. For statistical testing and inference applications, use spdep::geary.test()
instead.

Usage

ww_global_geary_c(data, ...)

ww_global_geary_c_vec(truth, estimate, wt, na_rm = FALSE, ...)

ww_global_geary_pvalue(data, ...)

ww_global_geary_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Additional arguments passed to spdep::geary() (for ww_global_geary_c())
or spdep::geary.test() (for ww_global_geary_pvalue()).

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

wt A listw object, for instance as created with ww_build_weights(). For data.frame
input, may also be a function that takes data and returns a listw object.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

16 ww_global_geary_c

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups. For _vec() func-
tions, a single value (or NA).

References

Geary, R. C. (1954). "The Contiguity Ratio and Statistical Mapping". The Incorporated Statistician.
5 (3): 115–145. doi:10.2307/2986645.

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.

See Also

Other autocorrelation metrics: ww_global_moran_i(), ww_local_geary_c(), ww_local_getis_ord_g(),
ww_local_moran_i()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_moran_i(), ww_local_geary_c(),
ww_local_getis_ord_g(), ww_local_moran_i(), ww_willmott_d()

Examples

guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)

ww_global_geary_c(guerry_model, Crm_prs, predictions)
ww_global_geary_pvalue(guerry_model, Crm_prs, predictions)

wt <- ww_build_weights(guerry_model)

ww_global_geary_c_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)
ww_global_geary_pvalue_vec(

guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)

ww_global_moran_i 17

ww_global_moran_i Global Moran’s I statistic

Description

Calculate the global Moran’s I statistic for model residuals. ww_global_moran_i() returns the
statistic itself, while ww_global_moran_pvalue() returns the associated p value. These functions
are meant to help assess model predictions, for instance by identifying if there are clusters of higher
residuals than expected. For statistical testing and inference applications, use spdep::moran.test()
instead.

Usage

ww_global_moran_i(data, ...)

ww_global_moran_i_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)

ww_global_moran_pvalue(data, ...)

ww_global_moran_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Additional arguments passed to spdep::moran() (for ww_global_moran_i())
or spdep::moran.test() (for ww_global_moran_pvalue()).

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

wt A listw object, for instance as created with ww_build_weights(). For data.frame
input, may also be a function that takes data and returns a listw object.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

18 ww_local_geary_c

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups. For _vec() func-
tions, a single value (or NA).

References

Moran, P.A.P. (1950). "Notes on Continuous Stochastic Phenomena." Biometrika, 37(1/2), pp 17.
doi: 10.2307/2332142

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.

See Also

Other autocorrelation metrics: ww_global_geary_c(), ww_local_geary_c(), ww_local_getis_ord_g(),
ww_local_moran_i()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_geary_c(), ww_local_geary_c(),
ww_local_getis_ord_g(), ww_local_moran_i(), ww_willmott_d()

Examples

guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)

ww_global_moran_i(guerry_model, Crm_prs, predictions)
ww_global_moran_pvalue(guerry_model, Crm_prs, predictions)

wt <- ww_build_weights(guerry_model)

ww_global_moran_i_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)
ww_global_moran_pvalue_vec(

guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)

ww_local_geary_c Local Geary’s C statistic

ww_local_geary_c 19

Description

Calculate the local Geary’s C statistic for model residuals. ww_local_geary_c() returns the statis-
tic itself, while ww_local_geary_pvalue() returns the associated p value. These functions are
meant to help assess model predictions, for instance by identifying clusters of higher residuals than
expected. For statistical testing and inference applications, use spdep::localC_perm() instead.

Usage

ww_local_geary_c(data, ...)

ww_local_geary_c_vec(truth, estimate, wt, na_rm = FALSE, ...)

ww_local_geary_pvalue(data, ...)

ww_local_geary_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Additional arguments passed to spdep::localC() (for ww_local_geary_c())
or spdep::localC_perm() (for ww_local_geary_pvalue()).

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

wt A listw object, for instance as created with ww_build_weights(). For data.frame
input, may also be a function that takes data and returns a listw object.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

A tibble with columns .metric, .estimator, and .estimate and nrow(data) rows of values. For
_vec() functions, a numeric vector of length(truth) (or NA).

20 ww_local_getis_ord_g

References

Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis, 27, pp 93–115.
doi: 10.1111/j.1538-4632.1995.tb00338.x.

Anselin, L. 2019. A Local Indicator of Multivariate Spatial Association: Extending Geary’s C.
Geographical Analysis, 51, pp 133-150. doi: 10.1111/gean.12164

See Also

Other autocorrelation metrics: ww_global_geary_c(), ww_global_moran_i(), ww_local_getis_ord_g(),
ww_local_moran_i()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_geary_c(), ww_global_moran_i(),
ww_local_getis_ord_g(), ww_local_moran_i(), ww_willmott_d()

Examples

guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)

ww_local_geary_c(guerry_model, Crm_prs, predictions)
ww_local_geary_pvalue(guerry_model, Crm_prs, predictions)

wt <- ww_build_weights(guerry_model)

ww_local_geary_c_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)
ww_local_geary_pvalue_vec(

guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)

ww_local_getis_ord_g Local Getis-Ord G and G* statistic

Description

Calculate the local Getis-Ord G and G* statistic for model residuals. ww_local_getis_ord_g()
returns the statistic itself, while ww_local_getis_ord_pvalue() returns the associated p value.
These functions are meant to help assess model predictions, for instance by identifying clusters of
higher residuals than expected. For statistical testing and inference applications, use spdep::localG_perm()
instead.

ww_local_getis_ord_g 21

Usage

ww_local_getis_ord_g(data, ...)

ww_local_getis_ord_g_vec(truth, estimate, wt, na_rm = FALSE, ...)

ww_local_getis_ord_g_pvalue(data, ...)

ww_local_getis_ord_g_pvalue_vec(truth, estimate, wt, na_rm = FALSE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Additional arguments passed to spdep::localG() (for ww_local_getis_ord_g())
or spdep::localG_perm() (for ww_local_getis_ord_pvalue()).

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

wt A listw object, for instance as created with ww_build_weights(). For data.frame
input, may also be a function that takes data and returns a listw object.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

A tibble with columns .metric, .estimator, and .estimate and nrow(data) rows of values. For
_vec() functions, a numeric vector of length(truth) (or NA).

References

Ord, J. K. and Getis, A. 1995. Local spatial autocorrelation statistics: distributional issues and an
application. Geographical Analysis, 27, 286–306. doi: 10.1111/j.1538-4632.1995.tb00912.x

See Also

Other autocorrelation metrics: ww_global_geary_c(), ww_global_moran_i(), ww_local_geary_c(),
ww_local_moran_i()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_geary_c(), ww_global_moran_i(),
ww_local_geary_c(), ww_local_moran_i(), ww_willmott_d()

22 ww_local_moran_i

Examples

guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)

ww_local_getis_ord_g(guerry_model, Crm_prs, predictions)
ww_local_getis_ord_g_pvalue(guerry_model, Crm_prs, predictions)

wt <- ww_build_weights(guerry_model)

ww_local_getis_ord_g_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)
ww_local_getis_ord_g_pvalue_vec(

guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)

ww_local_moran_i Local Moran’s I statistic

Description

Calculate the local Moran’s I statistic for model residuals. ww_local_moran_i() returns the statis-
tic itself, while ww_local_moran_pvalue() returns the associated p value. These functions are
meant to help assess model predictions, for instance by identifying clusters of higher residuals than
expected. For statistical testing and inference applications, use spdep::localmoran_perm() in-
stead.

Usage

ww_local_moran_i(data, ...)

ww_local_moran_i_vec(truth, estimate, wt, na_rm = FALSE, ...)

ww_local_moran_pvalue(data, ...)

ww_local_moran_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Additional arguments passed to spdep::localmoran().

ww_local_moran_i 23

truth The column identifier for the true results (that is numeric). This should be an
unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

wt A listw object, for instance as created with ww_build_weights(). For data.frame
input, may also be a function that takes data and returns a listw object.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

A tibble with columns .metric, .estimator, and .estimate and nrow(data) rows of values. For
_vec() functions, a numeric vector of length(truth) (or NA).

References

Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis, 27, pp 93–115.
doi: 10.1111/j.1538-4632.1995.tb00338.x.

Sokal, R. R, Oden, N. L. and Thomson, B. A. 1998. Local Spatial Autocorrelation in a Biological
Model. Geographical Analysis, 30, pp 331–354. doi: 10.1111/j.1538-4632.1998.tb00406.x

See Also

Other autocorrelation metrics: ww_global_geary_c(), ww_global_moran_i(), ww_local_geary_c(),
ww_local_getis_ord_g()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_geary_c(), ww_global_moran_i(),
ww_local_geary_c(), ww_local_getis_ord_g(), ww_willmott_d()

Examples

guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)

ww_local_moran_i(guerry_model, Crm_prs, predictions)
ww_local_moran_pvalue(guerry_model, Crm_prs, predictions)

wt <- ww_build_weights(guerry_model)

ww_local_moran_i_vec(
guerry_model$Crm_prs,

24 ww_make_point_neighbors

guerry_model$predictions,
wt = wt

)
ww_local_moran_pvalue_vec(

guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt

)

ww_make_point_neighbors

Make ’nb’ objects from point geometries

Description

This function uses spdep::knearneigh() and spdep::knn2nb() to create a "nb" neighbors list.

Usage

ww_make_point_neighbors(data, k = 1, sym = FALSE, ...)

Arguments

data An sfc_POINT or sfc_MULTIPOINT object.

k How many nearest neighbors to use in spdep::knearneigh().

sym Force the output neighbors list (from spdep::knn2nb()) to symmetry.

... Other arguments passed to spdep::knearneigh().

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

An object of class "nb"

Examples

ww_make_point_neighbors(ny_trees)

ww_make_polygon_neighbors 25

ww_make_polygon_neighbors

Make ’nb’ objects from polygon geometries

Description

This function is an extremely thin wrapper around spdep::poly2nb(), renamed to use the way-
wiser "ww" prefix.

Usage

ww_make_polygon_neighbors(data, ...)

Arguments

data An sfc_POLYGON or sfc_MULTIPOLYGON object.

... Additional arguments passed to spdep::poly2nb().

Details

These functions can be used for geographic or projected coordinate reference systems and expect
2D data.

Value

An object of class "nb"

Examples

ww_make_polygon_neighbors(guerry)

ww_multi_scale Evaluate metrics at multiple scales of aggregation

Description

Evaluate metrics at multiple scales of aggregation

26 ww_multi_scale

Usage

ww_multi_scale(
data = NULL,
truth,
estimate,
metrics = list(yardstick::rmse, yardstick::mae),
grids = NULL,
...,
na_rm = TRUE,
aggregation_function = "mean",
autoexpand_grid = TRUE,
progress = TRUE

)

Arguments

data Either: a point geometry sf object containing the columns specified by the
truth and estimate arguments; a SpatRaster from the terra package con-
taining layers specified by the truth and estimate arguments; or NULL if truth
and estimate are SpatRaster objects.

truth, estimate If data is an sf object, the names (optionally unquoted) for the columns in data
containing the true and predicted values, respectively. If data is a SpatRaster
object, either (quoted) layer names or indices which will select the true and pre-
dicted layers, respectively, via terra::subset() If data is NULL, SpatRaster
objects with a single layer containing the true and predicted values, respectively.

metrics Either a yardstick::metric_set() object, or a list of functions which will
be used to construct a yardstick::metric_set() object specifying the perfor-
mance metrics to evaluate at each scale.

grids Optionally, a list of pre-computed sf or sfc objects specifying polygon bound-
aries to use for assessments.

... Arguments passed to sf::st_make_grid(). You almost certainly should pro-
vide these arguments as lists. For instance, passing n = list(c(1, 2)) will
create a single 1x2 grid; passing n = c(1, 2) will create a 1x1 grid and a 2x2
grid.

na_rm Boolean: Should polygons with NA values be removed before calculating met-
rics? Note that this does not impact how values are aggregated to polygons:
if you want to remove NA values before aggregating, provide a function to
aggregation_function which will remove NA values.

aggregation_function

The function to use to aggregate predictions and true values at various scales,
by default mean(). For the sf method, you can pass any function which takes
a single vector and returns a scalar. For raster methods, any function accepted
by exactextractr::exact_extract() (note that built-in function names must
be quoted). Note that this function does not pay attention to the value of na_rm;
any NA handling you want to do during aggregation should be handled by this
function directly.

ww_multi_scale 27

autoexpand_grid

Boolean: if data is in geographic coordinates and grids aren’t provided, the
grids generated by sf::st_make_grid() may not contain all observations. If
TRUE, this function will automatically expand generated grids by a tiny factor to
attempt to capture all observations.

progress Boolean: if data is NULL, should aggregation via exactextractr::exact_extract()
show a progress bar? Separate progress bars will be shown for each time truth
and estimate are aggregated.

Value

A tibble with six columns: .metric, with the name of the metric that the row describes; .estimator,
with the name of the estimator used, .estimate, with the output of the metric function; .grid_args,
with the arguments passed to sf::st_make_grid() via ... (if any), .grid, containing the grids
used to aggregate predictions, as well as the aggregated values of truth and estimate as well as
the count of non-NA values for each, and .notes, which (if data is an sf object) will indicate any
observations which were not used in a given assessment.

Raster inputs

If data is NULL, then truth and estimate should both be SpatRaster objects, as created via
terra::rast(). These rasters will then be aggregated to each grid using exactextractr::exact_extract().
If data is a SpatRaster object, then truth and estimate should be indices to select the appropri-
ate layers of the raster via terra::subset().

Grids are calculated using the bounding box of truth, under the assumption that you may have
extrapolated into regions which do not have matching "true" values. This function does not check
that truth and estimate overlap at all, or that they are at all contained within the grid.

Creating grid blocks

The grid blocks can be controlled by passing arguments to sf::st_make_grid() via Some
particularly useful arguments include:

• cellsize: Target cellsize, expressed as the "diameter" (shortest straight-line distance between
opposing sides; two times the apothem) of each block, in map units.

• n: The number of grid blocks in the x and y direction (columns, rows).

• square: A logical value indicating whether to create square (TRUE) or hexagonal (FALSE)
cells.

If both cellsize and n are provided, then the number of blocks requested by n of sizes specified by
cellsize will be returned, likely not lining up with the bounding box of data. If only cellsize is
provided, this function will return as many blocks of size cellsize as fit inside the bounding box
of data. If only n is provided, then cellsize will be automatically adjusted to create the requested
number of cells.

Grids are created by mapping over each argument passed via ... simultaneously, in a similar man-
ner to mapply() or purrr::pmap(). This means that, for example, passing n = list(c(1, 2)) will
create a single 1x2 grid, while passing n = c(1, 2) will create a 1x1 grid and a 2x2 grid. It also
means that arguments will be recycled using R’s standard vector recycling rules, so that passing n =
c(1, 2) and square = FALSE will create two separate grids of hexagons.

28 ww_willmott_d

This function can be used for geographic or projected coordinate reference systems and expects 2D
data.

References

Riemann, R., Wilson, B. T., Lister, A., and Parks, S. (2010). "An effective assessment protocol for
continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis
(FIA) data." Remote Sensing of Environment 114(10), pp 2337-2352, doi: 10.1016/j.rse.2010.05.010
.

Examples

data(ames, package = "modeldata")
ames_sf <- sf::st_as_sf(ames, coords = c("Longitude", "Latitude"), crs = 4326)
ames_model <- lm(Sale_Price ~ Lot_Area, data = ames_sf)
ames_sf$predictions <- predict(ames_model, ames_sf)

ww_multi_scale(
ames_sf,
Sale_Price,
predictions,
n = list(
c(10, 10),
c(1, 1)

),
square = FALSE

)

or, mostly equivalently
(there will be a slight difference due to `autoexpand_grid = TRUE`)
grids <- list(

sf::st_make_grid(ames_sf, n = c(10, 10), square = FALSE),
sf::st_make_grid(ames_sf, n = c(1, 1), square = FALSE)

)
ww_multi_scale(ames_sf, Sale_Price, predictions, grids = grids)

ww_willmott_d Willmott’s d and related values

Description

These functions calculate Willmott’s d value, a proposed replacement for R2 which better differ-
entiates between types and magnitudes of possible covariations. Additional functions calculate
systematic and unsystematic components of MSE and RMSE; the sum of the systematic and unsys-
tematic components of MSE equal total MSE (though the same is not true for RMSE).

ww_willmott_d 29

Usage

ww_willmott_d(data, ...)

S3 method for class 'data.frame'
ww_willmott_d(data, truth, estimate, na_rm = TRUE, ...)

ww_willmott_d_vec(truth, estimate, na_rm = TRUE, ...)

ww_willmott_d1(data, ...)

S3 method for class 'data.frame'
ww_willmott_d1(data, truth, estimate, na_rm = TRUE, ...)

ww_willmott_d1_vec(truth, estimate, na_rm = TRUE, ...)

ww_willmott_dr(data, ...)

S3 method for class 'data.frame'
ww_willmott_dr(data, truth, estimate, na_rm = TRUE, ...)

ww_willmott_dr_vec(truth, estimate, na_rm = TRUE, ...)

ww_systematic_mse(data, ...)

S3 method for class 'data.frame'
ww_systematic_mse(data, truth, estimate, na_rm = TRUE, ...)

ww_systematic_mse_vec(truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_mse(data, ...)

S3 method for class 'data.frame'
ww_unsystematic_mse(data, truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_mse_vec(truth, estimate, na_rm = TRUE, ...)

ww_systematic_rmse(data, ...)

S3 method for class 'data.frame'
ww_systematic_rmse(data, truth, estimate, na_rm = TRUE, ...)

ww_systematic_rmse_vec(truth, estimate, na_rm = TRUE, ...)

ww_unsystematic_rmse(data, ...)

S3 method for class 'data.frame'
ww_unsystematic_rmse(data, truth, estimate, na_rm = TRUE, ...)

30 ww_willmott_d

ww_unsystematic_rmse_vec(truth, estimate, na_rm = TRUE, ...)

Arguments

data A data.frame containing the columns specified by the truth and estimate
arguments.

... Not currently used.
truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and sup-
ports quasiquotation (you can unquote column names). For _vec() functions, a
numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

Values of d and d1 range from 0 to 1, with 1 indicating perfect agreement. Values of dr range from
-1 to 1, with 1 similarly indicating perfect agreement. Values of RMSE are in the same units as
truth and estimate, while values of MSE are in squared units. truth and estimate must be
the same length. This function is not explicitly spatial and as such can be applied to data with any
number of dimensions and any coordinate reference system.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups. For _vec() func-
tions, a single value (or NA).

References

Willmott, C. J. 1981. "On the Validation of Models". Physical Geography 2(2), pp 184-194, doi:
10.1080/02723646.1981.10642213.

Willmott, C. J. 1982. "Some Comments on the Evaluation of Model Performance". Bulletin of the
American Meteorological Society 63(11), pp 1309-1313, doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

Willmott C. J., Ackleson S. G., Davis R. E., Feddema J. J., Klink K. M., Legates D. R., O’Donnell
J., Rowe C. M. 1985. "Statistics for the evaluation of model performance." Journal of Geophysical
Research 90(C5): 8995–9005, doi: 10.1029/jc090ic05p08995

Willmott, C. J., Robeson, S. M., and Matsuura, K. "A refined index of model performance". Inter-
national Journal of Climatology 32, pp 2088-2094, doi: 10.1002/joc.2419.

See Also

Other agreement metrics: ww_agreement_coefficient()

Other yardstick metrics: ww_agreement_coefficient(), ww_global_geary_c(), ww_global_moran_i(),
ww_local_geary_c(), ww_local_getis_ord_g(), ww_local_moran_i()

ww_willmott_d 31

Examples

x <- c(6, 8, 9, 10, 11, 14)
y <- c(2, 3, 5, 5, 6, 8)

ww_willmott_d_vec(x, y)
ww_willmott_d1_vec(x, y)
ww_willmott_dr_vec(x, y)
ww_systematic_mse_vec(x, y)
ww_unsystematic_mse_vec(x, y)
ww_systematic_rmse_vec(x, y)
ww_unsystematic_rmse_vec(x, y)

example_df <- data.frame(x = x, y = y)
ww_willmott_d(example_df, x, y)
ww_willmott_d1(example_df, x, y)
ww_willmott_dr(example_df, x, y)
ww_systematic_mse(example_df, x, y)
ww_unsystematic_mse(example_df, x, y)
ww_systematic_rmse(example_df, x, y)
ww_unsystematic_rmse(example_df, x, y)

Index

∗ agreement metrics
ww_agreement_coefficient, 7
ww_willmott_d, 28

∗ area of applicability functions
predict.ww_area_of_applicability,

5
ww_area_of_applicability, 9

∗ autocorrelation metrics
ww_global_geary_c, 15
ww_global_moran_i, 17
ww_local_geary_c, 18
ww_local_getis_ord_g, 20
ww_local_moran_i, 22

∗ datasets
guerry, 3
ny_trees, 4
worldclim_simulation, 6

∗ yardstick metrics
ww_agreement_coefficient, 7
ww_global_geary_c, 15
ww_global_moran_i, 17
ww_local_geary_c, 18
ww_local_getis_ord_g, 20
ww_local_moran_i, 22
ww_willmott_d, 28

defused function call, 14

exactextractr::exact_extract(), 26, 27

guerry, 3

Including function calls in error
messages, 14

mapply(), 27
mean(), 26

ny_trees, 4

predict(), 11

predict.ww_area_of_applicability, 5, 12
purrr::pmap(), 27

quasiquotation, 8, 15, 17, 19, 21, 23, 30

recipes::recipe(), 10, 11

sf::st_make_grid(), 26, 27
spdep::geary(), 15
spdep::geary.test(), 15
spdep::knearneigh(), 24
spdep::knn2nb(), 24
spdep::localC(), 19
spdep::localC_perm(), 19
spdep::localG(), 21
spdep::localG_perm(), 20, 21
spdep::localmoran(), 22
spdep::localmoran_perm(), 22
spdep::moran(), 17
spdep::moran.test(), 17
spdep::nb2listw(), 14
spdep::poly2nb(), 25

terra::predict(), 5
terra::rast(), 27
terra::subset(), 26, 27

worldclim_simulation, 6
ww_agreement_coefficient, 7, 16, 18, 20,

21, 23, 30
ww_agreement_coefficient_vec

(ww_agreement_coefficient), 7
ww_area_of_applicability, 6, 9
ww_build_neighbors, 13
ww_build_neighbors(), 14
ww_build_weights, 14
ww_build_weights(), 15, 17, 19, 21, 23
ww_global_geary_c, 9, 15, 18, 20, 21, 23, 30
ww_global_geary_c_vec

(ww_global_geary_c), 15

32

INDEX 33

ww_global_geary_pvalue
(ww_global_geary_c), 15

ww_global_geary_pvalue_vec
(ww_global_geary_c), 15

ww_global_moran_i, 9, 16, 17, 20, 21, 23, 30
ww_global_moran_i_vec

(ww_global_moran_i), 17
ww_global_moran_pvalue

(ww_global_moran_i), 17
ww_global_moran_pvalue_vec

(ww_global_moran_i), 17
ww_local_geary_c, 9, 16, 18, 18, 21, 23, 30
ww_local_geary_c_vec

(ww_local_geary_c), 18
ww_local_geary_pvalue

(ww_local_geary_c), 18
ww_local_geary_pvalue_vec

(ww_local_geary_c), 18
ww_local_getis_ord_g, 9, 16, 18, 20, 20, 23,

30
ww_local_getis_ord_g_pvalue

(ww_local_getis_ord_g), 20
ww_local_getis_ord_g_pvalue_vec

(ww_local_getis_ord_g), 20
ww_local_getis_ord_g_vec

(ww_local_getis_ord_g), 20
ww_local_moran_i, 9, 16, 18, 20, 21, 22, 30
ww_local_moran_i_vec

(ww_local_moran_i), 22
ww_local_moran_pvalue

(ww_local_moran_i), 22
ww_local_moran_pvalue_vec

(ww_local_moran_i), 22
ww_make_point_neighbors, 24
ww_make_point_neighbors(), 14
ww_make_polygon_neighbors, 25
ww_make_polygon_neighbors(), 14
ww_multi_scale, 25
ww_systematic_agreement_coefficient

(ww_agreement_coefficient), 7
ww_systematic_agreement_coefficient_vec

(ww_agreement_coefficient), 7
ww_systematic_mpd

(ww_agreement_coefficient), 7
ww_systematic_mpd_vec

(ww_agreement_coefficient), 7
ww_systematic_mse (ww_willmott_d), 28
ww_systematic_mse_vec (ww_willmott_d),

28
ww_systematic_rmpd

(ww_agreement_coefficient), 7
ww_systematic_rmpd_vec

(ww_agreement_coefficient), 7
ww_systematic_rmse (ww_willmott_d), 28
ww_systematic_rmse_vec (ww_willmott_d),

28
ww_unsystematic_agreement_coefficient

(ww_agreement_coefficient), 7
ww_unsystematic_agreement_coefficient_vec

(ww_agreement_coefficient), 7
ww_unsystematic_mpd

(ww_agreement_coefficient), 7
ww_unsystematic_mpd_vec

(ww_agreement_coefficient), 7
ww_unsystematic_mse (ww_willmott_d), 28
ww_unsystematic_mse_vec

(ww_willmott_d), 28
ww_unsystematic_rmpd

(ww_agreement_coefficient), 7
ww_unsystematic_rmpd_vec

(ww_agreement_coefficient), 7
ww_unsystematic_rmse (ww_willmott_d), 28
ww_unsystematic_rmse_vec

(ww_willmott_d), 28
ww_willmott_d, 9, 16, 18, 20, 21, 23, 28
ww_willmott_d1 (ww_willmott_d), 28
ww_willmott_d1_vec (ww_willmott_d), 28
ww_willmott_d_vec (ww_willmott_d), 28
ww_willmott_dr (ww_willmott_d), 28
ww_willmott_dr_vec (ww_willmott_d), 28

yardstick::metric_set(), 26

	guerry
	ny_trees
	predict.ww_area_of_applicability
	worldclim_simulation
	ww_agreement_coefficient
	ww_area_of_applicability
	ww_build_neighbors
	ww_build_weights
	ww_global_geary_c
	ww_global_moran_i
	ww_local_geary_c
	ww_local_getis_ord_g
	ww_local_moran_i
	ww_make_point_neighbors
	ww_make_polygon_neighbors
	ww_multi_scale
	ww_willmott_d
	Index

